Фото&Техника

08/2011
02/2011
07/2007
33/2006
18/2006
06/2006
33/2005
18/2005
34/2004

20/2004

7/2004
33/2003

ПОИСК

ИНФОРМАЦИЯ

О нас
Контакты
Где купить?
Реклама на сайте
Подписка на новости
Карта сайта








  главная    содержание    форум    архив  

Статья

Светить всегда!

Свет, освещение — это одна из основ фотографии. Именно свет выявляет форму, объем, фактуру и цвет предметов окружающего нас мира. Ну а благодаря нашему зрению мы имеем способность во всех деталях воспринимать эту информацию. Наше зрение — мощнейший инструмент восприятия. Мы отлично видим окружающие нас предметы и при ярком контрастном свете солнца, и в пасмурную погоду, и при искусственном освещении, и даже в сумерках. Однако средства фотографии не столь совершенны. И матрица цифрового аппарата, и пленка требуют для получения изображения вполне определенных параметров освещения фотографируемой сцены.

Впрочем, когда речь идет о съемке в солнечную погоду, то и интенсивность освещения, и его цветовые параметры практически всегда удовлетворяют этим требованиям. Но свет солнца, как известно, величина непостоянная. В одно время интенсивность солнечного света более чем достаточна для съемки, а через полчаса солнце может спрятаться за облака или вообще уйти за горизонт. А в помещении интенсивность солнечного света чаще всего и вовсе недостаточна для съемки. Так что без применения искусственного освещения о съемке в помещении или при других неблагоприятных условиях лучше вообще забыть. С другой стороны, создать при помощи обычных осветительных приборов — ламп накаливания — столь высокий уровень освещенности, чтобы выдержка при съемке не растягивалась на секунды и минуты, весьма сложно. Не говоря уже о том, что лампы можно расставить тоже далеко не везде, и что цветовые параметры света ламп накаливания сильно отличаются от общепринятого эталона — солнечного света.

Поэтому традиционная фотография «довспышечной» эпохи не отличалась слишком большим выбором сюжетов. Ведь фотограф той поры практически не был ограничен только при съемке дневных пейзажей или жанровых сцен на улице. Съемка интерьеров и студийные портреты уже были связаны с гораздо большим количеством проблем, а репортажная съемка (особенно тогда, когда действие происходило не на улице, в солнечную погоду) представляла одну сплошную проблему.

Выйти из круга сюжетов, ограниченного наличием достаточного по интенсивности солнечного освещения, фотографии дало возможность изобретение фотовспышки. Компактный и всегда готовый к использованию источник света не зря заслужил эпитет «карманное солнце». Исключительно большая мощность, а значит — и минимальная продолжительность импульса света, излучаемого импульсной лампой электронной фотовспышки, позволили применять моментальные выдержки при съемке не только на улице в ясную солнечную погоду, но и в условиях недостаточной освещенности — в пасмурную погоду, в темное время суток и даже в помещении. Для цветной фотографии было важно и то, что спектр света фотовспышки практически идентичен спектру солнечного света. А значит, нет необходимости в применении каких-либо цветокорректирующих светофильтров при съемке со вспышкой на самую распространенную «дневную» пленку. Да и смешивать солнечный свет со светом вспышки можно без каких-либо проблем, используя фотовспышку для подсветки теней при съемке на солнце.

Поначалу электронные фотовспышки были устройствами достаточно громоздкими и дорогими. Но со временем электроника совершенствовалась. Вспышки уменьшились в размерах и стали намного доступнее по цене. Кроме того, вспышки обзавелись многими другими полезными функциями — стали питаться от компактных батареек или аккумуляторов, получили возможность автоматического управления. Поэтому и неудивительно, что электронные фотовспышки на сегодняшний день заработали огромную популярность среди самых широких слоев фотографов-профессионалов и фотолюбителей. Ведь только раньше фотовспышка выступала в роли дополнительного аксессуара. Сейчас же встроенная фотовспышка представляет собой обязательную деталь конструкции основной массы фотоаппаратов — от полупрофессиональных зеркалок до одноразовых «мыльниц» ценой в несколько долларов.

Устройство фотовспышек

Конструкция практически любой электронной фотовспышки состоит из трех главных элементов — газоразрядной лампы, накопительного конденсатора и устройства запуска.

Преобразование электрической энергии в световую происходит благодаря импульсной газоразрядной лампе. Она представляет собой прозрачную герметичную стеклянную трубку (прямой, дугообразной или кольцевой формы), заполненную инертным газом (чаще всего — ксеноном). В торцах трубки впаяны два электрода, изготовленные из тугоплавких металлов. К этим электродам подключается мощный источник высокого напряжения — накопительный конденсатор. Он запасает в себе энергию, которая при разряде будет превращена в свет. Третий электрод импульсной лампы — поджигающий. Он делается обычно из проволоки или в виде полоски токопроводящей мастики.

Устройство запуска — это повышающий автотрансформатор, на первичную обмотку которого через синхроконтакт фотоаппарата разряжается пусковой конденсатор небольшой емкости. При этом на выводе вторичной (высоковольтной) обмотки, подключенной к поджигающему электроду газоразрядной лампы, возникает переменный потенциал очень высокого напряжения (несколько тысяч вольт).

Соответственно электронная фотовспышка работает следующим образом. Накопительный конденсатор, заряженный до высокого напряжения (порядка 300—400 вольт), подсоединен к газоразрядной лампе. Однако такого напряжения на электродах лампы все же недостаточно для того, чтобы разряд произошел самопроизвольно. Для этого (естественно, в момент полного открытия затвора, при срабатывании синхроконтакта) высоковольтный импульс, подаваемый на поджигающий электрод лампы, ионизирует газ внутри нее и приводит к началу разряда накопительного конденсатора через лампу-вспышку. За время разряда, длящегося тысячные доли секунды и сопровождаемого интенсивной световой вспышкой, напряжение на конденсаторе падает, и разряд прекращается.

После этого накопительный конденсатор снова заряжается, и при повторной подаче импульса на поджигающий электрод лампа может дать следующую вспышку. На использовании подобных принципов построены практически все нынешние фотовспышки от простых и недорогих до самых сложных автоматических, поэтому дальше углубляться в физику этих процессов мы не будем. Гораздо интереснее и полезнее более подробно рассмотреть принципы использования света фотовспышек в фотографии, а также базовые и более продвинутые режимы работы вспышек.

Основные параметры фотовспышек

Энергия вспышки

Максимальная энергия импульса — одна из самых главных характеристик фотовспышки. Чем больше энергия, тем больше света может дать вспышка. Максимальную энергию вспышки всегда достаточно легко подсчитать, поскольку она определяется только емкостью накопительного конденсатора и напряжением на нем. Однако эта величина, хоть она и рассчитывается проще всего, практически никогда не используется (к ней обращаются разве что только фотографы-профессионалы, работающие со студийными вспышками). Почему? Дело в том, что для расчетов экспозиции при съемке со вспышкой важна не величина энергии вспышки, а результат ее действия — освещенность объекта съемки в результате вспышки. Ну а рассчитать освещенность объекта съемки исходя из энергии вспышки — не так просто.

В эту формулу кроме энергии вспышки входят еще много самых разных величин — и расстояние до объекта съемки, и светоотдача импульсной лампы, и параметры отражателя и рассеивателя, направляющих свет вспышки. В итоге получается сложная формула, которой оперировать при репортажной съемке весьма неудобно, да и классифицировать вспышки по их основному параметру — «дальнобойности» — такая формула возможности не дает. Однако выход был найден благодаря особой характеристике вспышки, носящей название «Ведущее число».

Ведущее число вспышки

Как известно, если размеры источника света (вспышки) значительно меньше расстояния до объекта съемки, то освещенность обратно пропорциональна квадрату расстояния до источника света. То есть из двух объектов, расположенных по отношению к источнику света один вдвое дальше другого, ближний будет освещен в четыре раза сильнее. Соответственно для сохранения постоянным количества света, падающего на пленку в фотоаппарате при съемке каждого из этих объектов, диафрагма объектива должна будет отличаться на две ступени. Если, к примеру, для правильной экспозиции одного объекта, расположенного на расстоянии 1 метра от источника света (вспышки), оптимальное значение диафрагмы будет 5,6, то для расположенного вдвое дальше диафрагму придется открыть до значения 2,8.

И вот тут обнаруживается довольно удобная закономерность: если перемножить значения расстояния до объекта съемки и соответствующего одному уровню экспозиции диафрагменного числа объектива, то эта величина будет иметь постоянное значение — в нашем примере 5,6 метрa (5,6 х 1 метр или 2,8 х 2 метра). Выведенная таким образом величина весьма часто используется в фотографии, где ее принято называть «ведущим числом» вспышки (GN, «Guide Number» в англоязычной литературе). С помощью ведущего числа процедура расчета необходимой диафрагмы при известных параметрах вспышки и расстоянии до объекта съемки становится занятием весьма простым и достаточно точным. Для определения необходимой диафрагмы, которую нужно установить на объективе, достаточно ведущее число вспышки разделить на расстояние до объекта съемки и (для удобства) округлить до ближайшего стандартного диафрагменного числа.

Величина ведущего числа вспышки определяется для какого-то одного значения светочувствительности пленки, обычно — для пленки ISO 100. Поскольку для более чувствительных пленок количество света, необходимое для создания нормальной экспозиции, будет меньше, следовательно, объектив при съемке нужно будет задиафрагмировать больше на столько ступеней, во сколько раз отличается чувствительность примененной пленки от стандартной ISO 100. Воспользовавшись данными предыдущего примера, можно подсчитать, что для тех же световых условий, при которых для пленки чувствительностью ISO 100 нормальное изображение получалось при диафрагме 5,6, при использовании пленки с чувствительностью ISO 400 диафрагму нужно будет закрыть еще на два деления — до 11. Соответственно и значение ведущего числа этой же вспышки для пленки ISO 400 возрастет вдвое — до значения 11.

То есть уменьшение (увеличение) чувствительности пленки в два раза приводит к уменьшению (увеличению) ведущего числа вспышки примерно в 1,5 раза (точнее в 1,41 раза — квадратный корень из двух). Обычно принято обозначать ведущее число вспышки в метрах для пленки ISO 100. Однако могут встречаться и другие маркировки. Например в США и некоторых других странах, где метрическими мерами не пользуются, ведущее число принято выражать в футах (соответственно его значение становится примерно в 3 раза больше ведущего числа в метрах).

«Рекламное» ведущее число вспышки

Здесь стоит сделать небольшое «лирическое отступление». В «околофотографических» кругах весьма распространено мнение, что достаточно большое (до 50—60!) ведущее число современных вспышек — это не более чем надувательство потребителя. Попробуем разобраться в этом вопросе.

Каждому покупателю хочется купить более мощную (точнее — «дальнобойную») вспышку за минимальные деньги. Это естественно. При этом он руководствуется информацией о ее ведущем числе. Это тоже нормально. Но у производителя тоже свои интересы — чем мощнее вспышка, тем она выходит дороже, прожорливей, больше и тяжелее. Поэтому в случае зумированной вспышки ее ведущее число почти всегда фигурирует в названии (или в рекламе) в максимальном значении, то есть при минимальном угле освещения и наиболее эффективном режиме срабатывания. Естественно, при увеличении угла рассеивания света ведущее число падает, при переходе в режим высокоскоростной синхронизации FP/HSS тоже падает (в несколько раз).

Ведущее число вспышки может также снижаться благодаря другим факторам — например из-за несвежих батареек или разряженных аккумуляторов, из-за недостаточно продолжительных перерывов между вспышками, из-за загрязнения (помутнения) стекла рассеивателя и так далее. В итоге оказывается, что вспышка при соблюдении соответствующих условий (положения зум-рефлектора 105 или 85 мм, свежих аккумуляторах, достаточных для полного заряда конденсатора промежутках между вспышками и так далее) действительно обладает таким ведущим числом, как указано в рекламе. А для других условий ведущее число будет меньше (иной раз заметно). Так что тут все достаточно честно.

Впрочем, «дальнобойность» вспышки наиболее остро востребована при использовании длиннофокусной оптики. Ведь при съемке на большом расстоянии применяется чаще всего именно длиннофокусная оптика, отличающаяся к тому же еще и заметно меньшей светосилой, чем нормальная или широкоугольная. Поэтому зумированные вспышки, даже обладая меньшей максимальной энергией, чем их незумированные аналоги, все же более удобны и более универсальны. К примеру, при сравнении вспышек Minolta Program 2500 (D) и 3600HS (D) оказывается, что формально более мощная (исходя из маркировки) 3600HS (D) на самом деле имеет меньшую энергию, так как ее ведущее число в положении зум-рефлектора «28 мм» составляет всего 22, в то время как у 2500 (D) при таких же условиях ведущее число выше — 25. Однако при съемке 35-мм объективом эти вспышки сравниваются по эффективности, а при использовании длиннофокусной оптики (85 мм и более) эффективность менее мощной вспышки 3600HS (D) уже очевидна — ведущее число 36 против 25.

Угол рассеивания света

Поскольку фотографические объективы имеют вполне определенный угол зрения, то при съемке этими объективами с применением вспышки «палить из пушки по воробьям», то есть светить во все стороны — не лучший вариант, поскольку в этом случае основная часть энергии вспышки будет израсходована впустую. Гораздо эффективнее вести «снайперский огонь», а именно — освещать объект съемки только в пределах поля зрения объектива. Для этого нужно собрать весь свет от вспышки в концентрированный пучок, угол расхождения которого точно бы соответствовал углу зрения используемого объектива. Впрочем, надо обращать внимание на один важный момент. Если вспышка освещает меньшую площадь, чем «видит» объектив, то по краям (в первую очередь по углам) фотографии появятся неприятные затемнения.

Подобные эффекты нередко мы видим на фотографиях, сделанных дешевыми «мыльницами». Так что тут приходится идти на компромисс — выбирать угол рассеивания света вспышки достаточно большим, чтобы не возникало проблем с затемнением углов кадра при съемке самым широкоугольным из наиболее часто используемых объективов. Однако угол не должен быть слишком широким, чтобы ведущее число вспышки было как можно больше. Поэтому производители при разработке вспышек с жестко расположенным рефлектором обычно выбирают оптимальный угол рассеивания, соответствующий углу зрения объектива 35 мм (Canon Speedlite 480EG) или 28 мм (Minolta Program Flash 2500 (D)).

У некоторых вспышек рассеиватель сделан подвижным (например Metz 36AF-3), благодаря чему появляется возможность ручной подстройки угла рассеивания света, а значит и оптимизации ведущего числа. К примеру, при пользовании длиннофокусным объективом можно сдвинуть рассеиватель в положение «теле», значительно повысив «дальнобойность» вспышки в сравнении с положением, соответствующим углу зрения широкоугольного объектива. Однако при репортажной съемке зум-объективом достаточно неудобно каждый раз при изменении фокусного расстояния объектива передвигать рассеиватель вспышки в соответствующее положение. Ошибка, сделанная в спешке, может стоить дорого — световой пучок, концентрированный более чем необходимо, осветит только центральную часть кадра, а края останутся темными. Поэтому, чтобы избавить себя от этой заботы, приходится жертвовать ведущим числом, устанавливая зум-головку вспышки в широкоугольное положение, гарантированно покрывающее поле зрения объектива.

Автозумирование вспышки

В системах автофокусных зеркальных фотоаппаратов, благодаря способности объектива и камеры сообщать вспышке текущее фокусное расстояние объектива, появилась возможность автоматически согласовывать угол рассеивания света вспышки с углом зрения объектива. Для использования этой информации во вспышку встроен электропривод, изменяющий расстояние между рассеивателем и отражателем и, соответственно, автоматически меняющий угол рассеивания света вспышки в зависимости от фокусного расстояния объектива, установленного на камере. В современных вспышках рассеиватель укреплен неподвижно в корпусе, а моторный привод передвигает отражатель вспышки вместе с укрепленной на нем лампой-вспышкой. Такая конструкция позволила создать не только надежные, мощные и достаточно компактные вспышки, но и решить вопрос максимально экономного расходования энергии батарей.

Большинство современных топ-вспышек без каких-либо дополнительных насадок позволяют использовать как широкоугольную оптику с фокусным расстоянием от 24 мм, так и длиннофокусные объективы с фокусным расстоянием 85—105 мм и более, имея в любом случае максимально сфокусированный мощный световой пучок. К примеру, ведущее число вспышки Minolta Program Flash 5600HS (D) при использовании объектива 24 мм составляет 30 (в метрах для пленки ISO 100), а при фокусном расстоянии объектива 85 мм и более увеличивается почти вдвое — до 56! При этом зумирование головки вспышки происходит практически бесступенчато.

Синхронизация с фотоаппаратом

Срабатывание вспышки происходит практически мгновенно. Максимальная продолжительность импульса света редко превышает 1/500 долю секунды, а чаще всего происходит даже быстрее — вплоть до 1/10 000 доли секунды. Поэтому очень важно, чтобы вспышка произошла точно в тот момент, когда затвор аппарата будет открыт полностью.

Апертурный (центральный) затвор, располагаемый либо внутри объектива, либо в непосредственной близости от его линз, применяется в большинстве компактных пленочных аппаратов, в объективах крупноформатных и некоторых среднеформатных камер. Затвор такого типа на всех выдержках открывается полностью (хотя бы на мгновение). Поэтому с согласованием работы апертурного затвора и вспышки проблем не возникает — электронная вспышка на аппаратах с центральным затвором может быть использована практически без каких-то ограничений.

В цифровых фотоаппаратах (за исключением зеркальных) чаще всего применяется упрощенный механический затвор, фактически лишь прикрывающий матрицу в выключенном состоянии и во время визирования, а выдержка уже определяется временем опроса матрицы. В этом случае также практически никаких ограничений на работу со вспышкой не накладывается. Вспышка может быть применена на любой выдержке. Главное — чтобы выдержка была длиннее продолжительности импульса вспышки.

Фокальный (шторно-щелевой) затвор, которым обычно оснащаются зеркальные фотоаппараты, работает на совершенно другом принципе — одна шторка открывает кадровое окно, а вторая его закрывает. Синхроконтакт шторного затвора срабатывает либо после того, как открывающая шторка полностью открыла кадр, либо перед тем, как начинает движение вторая, закрывающая шторка. Выдержка, при которой вторая шторка начинает свое движение сразу после того, как первая полностью открыла кадровое окно, обычно называется «выдержкой синхронизации» (хотя более правильно называть ее «выдержкой полного открытия кадрового окна»). На более длинных выдержках шторный затвор также открывается полностью, что не создает проблем при пользовании вспышкой. А вот короткие выдержки в шторно-щелевом затворе образуются за счет того, что вторая (закрывающая) шторка начинает свое движение еще до того, как первая дойдет до края кадрового окна.

Соответственно при срабатывании синхроконтакта на коротких выдержках вспышка проэкспонирует не весь кадр, а только его часть, попавшую в щель между первой и второй шторками. Поэтому (если не применять некоторые технические ухищрения, о которых речь пойдет ниже) использовать вспышку можно только на скоростях затвора меньших, чем выдержка полного открытия кадрового окна. Впрочем, для затворов современных 35-мм зеркалок кратчайшая выдержка полного открытия кадрового окна находится в пределах от 1/90 секунды (недорогие любительские аппараты типа Canon EOS 300V) до 1/200 секунды (Minolta Dynax 7). Некоторые профессиональные аппараты имеют и более скоростные затворы, полностью открывающиеся на выдержках 1/250 секунды (например Canon EOS 1V) и даже 1/300 секунды (Minolta Dynax 9).

Синхронизация на сверхкоротких выдержках

Новейшие технологии позволили преодолеть ограничение на диапазон выдержек, накладываемое конструкцией шторно-щелевого затвора. Идея синхронизации на сверхкоротких выдержках, реализованная уже большинством производителей 35-мм фотоаппаратуры под названиями HSS (High Speed Sync.) и FP (Focal Plane sync.), весьма изящна — просто «заставить» лампу-вспышку излучать не один мощный импульс света, а генерировать в течение всего времени работы затвора множество маломощных импульсов с очень высокой частотой следования, практически сливающихся в один продолжительный импульс света. Такой принцип синхронизации позволил «отодвинуть» границу использования вспышки до невиданных ранее выдержек порядка 1/8000 секунды, давая возможность использовать, например, портретную светосильную оптику на открытых диафрагмах даже при ярком солнце.

Недостатков, конечно, и в такой системе хватает. В первую очередь это значительное уменьшение ведущего числа вспышки при переходе в режим сверхскоростной синхронизации (за счет потерь энергии при старт-стопном режиме работы вспышки). Мало того, ведущее число вспышки в таком режиме дополнительно уменьшается пропорционально выдержке (ведь с уменьшением ширины щели затвора на коротких выдержках количество света от вспышки, попадающего на пленку, становится тем меньше, чем уже щель). Поскольку работа в режиме высокоскоростной синхронизации требует изменения управления как вспышкой, так и аппаратом, воспользоваться этим режимом можно лишь в том случае, когда и аппарат, и вспышка поддерживают его.

Но даже с учетом всех этих недостатков режим высокоскоростной синхронизации со вспышкой часто весьма удобен.

Режимы работы вспышки

Ручной режим

Самые простые и недорогие вспышки не имеют совсем никакого управления. При срабатывании синхроконтакта такие вспышки переводят в световой импульс всю энергию, запасенную в конденсаторе. Для правильного экспонирования пленки при использовании такой вспышки приходится для каждого сюжета устанавливать соответствующее значение диафрагмы. Диафрагменное число рассчитывается, исходя из расстояния до объекта съемки и ведущего числа вспышки. Естественно, использование вспышки в таком режиме получается не слишком оперативным. К тому же вспышки, имеющие только режим полного разряда, оказываются еще и не универсальными. Мощная «дальнобойная» вспышка не позволит фотографировать на относительно близком расстоянии и при использовании высокочувствительной фотопленки. А удобная при такой съемке вспышка с небольшой энергией будет слишком слабой для съемки на длинных дистанциях или при работе с пленками небольшой чувствительности.

Более универсальной вспышку сделать можно при помощи переключаемой максимальной энергии. Однако все остальные недостатки использования в оперативной съемке неавтоматизированных вспышек при этом остаются. В настоящее время наиболее удачное применение вспышек с ручным управлением энергии импульса — это студийная съемка, где освещенность, создаваемая каждой из вспышек, определяется фотографом с учетом художественного замысла и контролируется при помощи флашметра. Также неавтоматические вспышки успешно применяются в недорогих P&S-камерах («мыльницах»). В этом случае владельцу аппарата для получения фотографий приемлемого качества достаточно только нажимать на кнопку спуска, не делая никаких настроек или регулировок. Ведь основная часть сюжетов с использованием вспышки снимается на расстоянии 2—3 метра, а в камеру заряжается любительская негативная пленка, «прощающая» даже значительные отклонения от нормальной экспозиции.

Автоматический режим

С развитием электроники электронные импульсные фотовспышки «обзавелись» встроенной автоматикой, позволившей значительно упростить процесс съемки со вспышкой, и сделав его столь же удобным, как и съемка при постоянном свете. Конструктивно автоматика состоит из силового элемента, управляющего разрядом вспышки, и специальной схемы контроля, использующей датчик, расположенный на передней панели корпуса вспышки. Этот датчик, будучи активированным при запуске вспышки, накапливает свет, отраженный от объекта съемки. Когда такая автоматика сочтет количество отразившегося от объекта съемки света достаточным для нормальной экспозиции, она прерывает разряд в лампе-вспышке. При этом на аппарате при съемке расположенных на различном расстоянии объектов не нужно постоянно изменять диафрагму. Требуется лишь установить кольцо диафрагмы на какое-то определенное значение (в соответствии с выбранной программой), а уж автоматика сама позаботится о необходимом для нормальной экспозиции количестве света.

Прерывание разряда у недорогих автоматических вспышек производится «добиванием» неиспользованной энергии конденсатора в специальном разряднике, подключаемом параллельно импульсной лампе. Такая автоматика отличается как весьма высоким энергопотреблением (как у неавтоматических вспышек!), так и ограничением на минимальный уровень энергии импульса. В более дорогих вспышках применяется управление принципиально другого типа, отключающее лампу-вспышку от накопительного конденсатора при помощи специализированного полупроводникового прибора (управляемого тиристора или IGBT-прибора), включенного последовательно между импульсной лампой и накопительным конденсатором. При таком управлении неиспользованная энергия сохраняется для дальнейшей работы, что позволяет увеличить как мощность, так и «скорострельность» вспышек, заодно значительно увеличивая ресурс элементов питания. Большинство современных автоматических фотовспышек обладают управлением именно такого, энергосберегающего, типа.

Все цепи схемы автоматики собираются внутри корпуса вспышки, поэтому такая автоматическая вспышка работает полностью автономно и может быть использована на любом аппарате. Естественно, в этом случае обязательно наличие на аппарате синхроконтакта, а также возможностей управления диафрагмой и установки выдержки синхронизации.

Вспышки со встроенной автономной автоматикой удобны для использования на камерах, не поддерживающих TTL-замер или более совершенные режимы управления вспышкой. Также не оставим без внимания использование автоматических вспышек с цифровыми фотоаппаратами, имеющими стандартный коаксиальный синхроконтакт или «горячий башмак» (например Fujifilm FinePix S602 zoom).

TTL-замер

Автоматические вспышки имеют некоторые принципиальные недостатки. Поскольку датчик автоматики установлен на корпусе вспышки и имеет фиксированный угол зрения (обычно примерно 25—40 градусов), то такая система может давать погрешности при работе с широкоугольными и длиннофокусными объективами. Автономная автоматика с внешним датчиком не учитывает влияния надетых на объектив светофильтров и насадок, изменения светосилы объектива при съемке в крупном масштабе или во время зумирования и так далее. Для решения этих вопросов проще всего оказалось перенести приемник автоматики в аппарат, чтобы производить измерение света, прошедшего через объектив и падающего непосредственно на пленку. Система с таким расположением датчика называется TTL-замером (Trough The Lens, «через объектив») или точнее — TTL-OTF (Off The Film, «от поверхности пленки»).

TTL-замер автоматически решает сразу все проблемы, связанные с учетом влияния на экспозицию насадок, светофильтров, угла зрения объектива и его светосилы, поскольку оценивается количество света, падающего непосредственно на пленку. В большинстве систем TTL-управления вспышкой в аппарате также располагается и электронная схема управления, определяющая момент отключения вспышки, а в корпусе вспышки остается только силовая электроника. Интегрирование TTL-замера для вспышки в конструкцию аппарата позволяет существенно упростить работу с навесной вспышкой, сделать ее максимально безошибочной и даже реализовать полностью автоматический программный режим при работе со вспышкой. Такой тип замера используется в большинстве современных зеркальных фотоаппаратов, постепенно внедряясь даже в конструкцию дальномерных профессиональных фотоаппаратов.

Как это всегда водится, не бывает ничего совершенного. И у классического TTL-замера также есть весьма серьезные недостатки. При обычном TTL-замере света, отраженного от плоскости пленки, на точность замера оказывает влияние отражающая способность поверхности пленки. Точнее говоря, проблемы вызывает разнобой значений этого коэффициента. К примеру, поверхность некоторых классических черно-белых пленок по сравнению с современными цветными заметно светлее, а следовательно, приводит к недоэкспонированию пленки. На другом «полюсе» можно привести в пример пленку Polaroid для мгновенного получения слайдов, имеющую практически черную поверхность. Впрочем, таких «проблемных» пленок немного, а для большинства современных пленок коэффициент отражения заключен в достаточно узких пределах.

Усовершенствование TTL-замера

Многозонный TTL-замер

Разнобоем коэффициента отражения поверхности пленки все недостатки классического TTL-OTF замера не исчерпываются. Благодаря особенности распространения света от точечного источника, при съемке со вспышкой в качестве основного источника света сюжетно важный передний план освещается гораздо более интенсивно, чем план задний. Наверняка вам знакомы эти типичные особенности «вспышечных» кадров — светлые, буквально выбеленные лица и фигуры на черном фоне. Датчик TTL-замера большинства фотоаппаратов обладает центрально взвешенной характеристикой восприятия. Поэтому метод вычисления правильной экспозиции на таких контрастных кадрах усреднением общего количества света по всей площади кадра часто дает «осечку».

Ведущие производители фотоаппаратуры начали совершенствование TTL-замера для вспышки такими же методами, как и для замера постоянного света. В ходе этого процесса единственный датчик вспышечного TTL-замера, имеющий центрально взвешенную характеристику, уступил место более сложной конструкции, состоящей из 3—5 датчиков (например Canon EOS 5). Такой датчик обеспечивает возможность многозонного замера света, позволяющего получить более детальные данные о распределении света по площади кадра и, естественно, более точно отмерить энергию импульса света, необходимого для правильного экспонирования объекта съемки.

Важным свойством такой многозонной системы явилось и то, что к остальным компонентам фотосистемы (объективам и вспышкам) не предъявляется никаких дополнительных требований. Поэтому такой многозонный TTL-OTF замер света вспышки используется и в современных аппаратах в том случае, когда из-за применения недостаточно совместимых объективов или вспышек не могут быть реализованы более продвинутые алгоритмы управления вспышкой. К примеру, современные автофокусные аппараты Nikon автоматически переходят в режим Multi-Sensor Balanced Fill-Flash (матричной сбалансированной вспышки-подсветки) в том случае, когда используются объективы и вспышки, не поддерживающие 3D-замер.

Матричный замер с предвспышкой E-TTL

Следующий шаг в совершенствовании системы управления вспышкой — это использование предварительной вспышки, оцениваемой матрицей многозонного экспозамера (той же, которая используется и для определения экспозиции по естественному свету). Количество датчиков в матрице многозонного замера значительно больше (от 14 зон у Minolta Dynax 7 до 35 у Canon EOS 30), а их расположение оптимально согласуется с расположением сенсоров фокусировки аппаратов, позволяя учитывать при обработке результатов замера и результаты работы системы автофокуса. Примером такого подхода к управлению вспышкой может служить система E-TTL (Evaluative Trough-The-Lens), применяемая в текущей линейке аппаратов Canon EOS. Для определения необходимого уровня энергии импульса основной вспышки используется предвспышка, которая излучается сразу после нажатия кнопки срабатывания затвора, но еще до подъема зеркала. Отразившийся от объекта свет предвспышки в системе E-TTL воспринимается многозонной матрицей оценочного замера.

Поскольку эта же матрица используется и для замера естественного света, то сравнение результатов предвспышки с уровнем постоянного освещения оказывается простым и корректным процессом. На основании этих данных рассчитывается оптимальный импульс для главного объекта съемки, идентифицировать который помогает система автофокусировки. Соответственно даже в случае попадания в кадр обширных поверхностей с высокой или низкой отражающей способностью последние оказывают минимально вредное влияние на точность экспонирования главного объекта съемки. Кроме повышения точности экспонирования такая система позволяет сохранить более естественный баланс уровня освещенности между передним планом и фоном при работе в режиме заполняющей вспышки. Аналогичным образом функционируют системы preflash-TTL (Minolta Dynax 9) и P-TTL (современные аппараты Pentax).

Учет расстояния до объекта съемки

3D Multi-Sensor Balanced Fill-Flash

Фирма Nikon, совершенствуя свои аппараты, реализовала несколько другой вариант повышения точности управления согласованными вспышками, построенный на учете расстояния до объекта съемки и использовании отдельного многозонного датчика, оценивающего серию предвспышек. Эта система получила название «3D Multi-Sensor Balanced Fill-Flash» (пространственная мультисенсорная сбалансированная заполняющая вспышка). В отличие от системы E-TTL, серия тестирующих предвспышек (Monitor Pre-flashes в терминологии Nikon) излучается сразу после подъема зеркала, но еще до срабатывания затвора. Свет тестирующих предвспышек, отраженный от объекта съемки, прошедший через объектив и отраженный от шторок затвора, воспринимает специальный многозонный сенсор в камере. По результатам замеров тестирующих предвспышек многозонным датчиком и информации до главного объекта съемки, передаваемой в камеру объективами Nikkor D- и G-типа, компьютер аппарата рассчитывает величину основного импульса вспышки. Также возможна реализация подобного режима и без серии предвспышек.

Комбинированные системы

ADI-управление вспышкой

На пути дальнейшего повышения точности экспонирования со вспышкой логичной идеей стало объединение обоих подходов, реализованных в системах 3D и E-TTL, — одновременное использование предвспышки и матрицы замера с большим количеством датчиков и информации о расстоянии до главного объекта съемки, передаваемой встроенным в объектив дальномером. Примером может служить система ADI (Advanced Distance Integration — учет расстояния до объекта) с предвспышкой, используемая на аппаратах Minolta Dynax текущей линейки. Камера рассчитывает необходимую энергию импульса вспышки в соответствии с расстоянием до объекта съемки, уровнем естественного света и результатом оценки отражающей способности объекта съемки и фона.

В системе ADI и измерение интенсивности естественного света, и оценка результатов предвспышки (излучаемой после нажатия на кнопку вспышки, но перед поднятием зеркала) производятся одной и той же 14-зонной матрицей сотового экспозамера, как и в системе E-TTL, поэтому сравнение естественного и вспышечного света производится максимально корректно. Параллельно производится расчет необходимой энергии импульса, исходя из ведущего числа вспышки и расстояния до объекта съемки (как в системе 3D). В итоге компьютер сопоставляет результаты обоих ветвей расчета, идентифицирует сюжет (дополнительно используя данные системы автофокусировки и датчик положения аппарата) и определяет необходимый вклад света вспышки. Избыточное количество информации об объекте съемки позволяет такой комбинированной системе безошибочно определить энергию вспышки, достаточную для правильного экспонирования даже в случаях, когда кадр имеет явные «проблемы» — например в нем присутствуют обширные отражения от блестящих поверхностей или явный контровый свет.

На таком же принципе (использование предвспышки с обработкой ее результатов матрицей, используемой для замера естественного света, и учет расстояния до объекта съемки) построены и другие новейшие системы управления вспышками — E-TTL II у Canon (применена на профессиональном D-SLR Canon EOS 1D mark II и на пленочных аппаратах Canon EOS 30V / 33V) и i-TTL у Nikon (используется в цифровых SLR Nikon D2H и Nikon D70).

Вспышка на цифровых аппаратах

Появление цифровых фотоаппаратов, использующих вместо пленки матрицу, задало новые стандарты для систем контроля внешней вспышкой. Во-первых, к точности определения экспозиции для цифровой матрицы предъявляются даже более жесткие требования, чем в случае с пленкой. Во-вторых, на цифровиках нельзя использовать обычный TTL-OTF замер. Ведь благодаря тому, что диффузное отражение от поверхности матрицы отсутствует, оказывается невозможным проводить непосредственно в процессе экспонирования измерение количества света, падающего на матрицу. Вот тут и пригодилось одно общее свойство, объединяющее все самые современные алгоритмы работы со вспышкой.

Как нетрудно заметить, все они не используют для управления вспышкой датчик TTL-замера, воспринимающий отраженный от пленки свет. Вместо этого используется предвспышка, обрабатываемая многозонным приемником. Поэтому большая часть таких систем практически в неизменном виде «перекочевала» с пленочных аппаратов на цифровики (например — E-TTL у Canon, ADI у Minolta, P-TTL у Pentax). Некоторых доработок потребовала лишь никоновская система 3D, которая в «цифровом» варианте получила название «D-TTL». В любом случае важно отметить следующее: цифровые аппараты, в отличие от пленочных, гораздо более критичны к поддержке навесной вспышкой соответствующих алгоритмов управления.

Совместимость

От описания различных «продвинутых» алгоритмов управления вспышкой самое время перейти к весьма важной теме — совместимости вспышек и аппаратов. Под термином «совместимость» мы имеем в виду возможность совместной работы вспышки и аппарата в соответствующих автоматических режимах без возникновения каких-либо проблем. При использовании на аппарате вспышки со встроенной автоматикой (или полностью ручной вспышки) каких-либо явных проблем совместимости практически никогда не возникает. Ведь эти системы по существу независимы, а связь с аппаратом минимальна — синхроконтакт аппарата лишь запускает вспышку в момент полного открытия затвора.

TTL-управление вспышкой уже требует расширенного информационного обмена между аппаратом (где находится датчик вспышечного TTL-замера и обслуживающие его электронные схемы) и самой вспышкой. Фирмы-производители фотоаппаратов никогда не старались стандартизировать друг с другом ни расположение на «горячем башмаке» дополнительных информационных контактов, необходимых для управления вспышкой, ни алгоритмы и сигналы этого управления. Поэтому для реализации возможности TTL-управления вспышкой каждому аппарату требуется своя (так называемая «согласованная») вспышка, то есть имеющая соответствующий набор функций и интерфейс управления. Согласованные вспышки изготовляются как производителями фотоаппаратуры, так и «независимыми» производителями. Последние практикуют выпуск в пределах одной модели целой гаммы вспышек, практически одинаковых как внешне, так и функционально, но приспособленных для работы с разными системами фотоаппаратуры.

Изящное и оригинальное решение для согласования вспышек своего производства с самыми различными моделями фотоаппаратов разных производителей было предложено в свое время немецкой компанией Metz. Это очень известная и популярная даже сейчас система сменных адаптеров SCA-300. На вспышку Metz, приспособленную для работы с адаптерами SCA-300, достаточно было надеть соответствующий модели аппарата системный адаптер, чтобы получить полностью совместимую системную вспышку, отрабатывающую важнейшие функции — TTL-контроль, индикацию в видоискателе готовности вспышки и срабатывания вспышечной автоматики. Система адаптеров SCA-300 оказалась настолько удачной, что она стала стандартной для вспышек других немецких производителей — Osram и Сullmann. Для автофокусных фотоаппаратов, имеющих более развитый интерфейс вспышка-аппарат, фирмой Metz предлагается аналогичная система SCA-3000, а сейчас на смену ей пришла система SCA-3002, обеспечивающая поддержку самых «продвинутых» систем управления вспышкой.

Впрочем, алгоритмы простого TTL-управления вспышкой и аналоговая система обмена информацией между аппаратом и вспышкой достаточно просты. Классический TTL-замер в случае с «неродной» вспышкой либо полностью работает, либо совсем не работает. Определить этот факт несложно уже после первых же отснятых кадров. Поэтому воссоздать во всех подробностях как интерфейс аппарат-вспышка, так и протокол обмена между ними при обычном TTL-замере удалось без проблем большинству независимых производителей, начиная от самых именитых (Metz) и заканчивая совершенно неизвестными южно-азиатскими компаниями.

Современные цифровые системы обмена информацией и управления вспышкой значительно более сложны. Поэтому у одних «независимых» производителей «взломать» алгоритмы управления оригинальных вспышек и воссоздать их в своих изделиях получилось лучше, а у других — хуже. В любом случае 100% совместимости реально можно ожидать только от «родных» вспышек. А от изделий «независимых» производителей вполне можно ожидать некоторых проблем с реализацией каких-нибудь режимов или функций (в редких случаях даже доходящих до проявлений частичной несовместимости с некоторыми моделями аппаратов). Возможно, что эта причина приводит к устойчивому спросу на более дорогие, но гарантированно совместимые по всем режимам «родные» системные вспышки, даже несмотря на доступность в продаже согласованных вспышек «независимых» производителей, отличающихся как меньшей ценой, так и зачастую большей функциональной насыщенностью.

Полезные режимы и функции вспышки

Подсветка системы АФ

Системы автофокусировки большинства зеркальных фотоаппаратов работают в достаточно широком диапазоне освещенности объекта съемки. Однако при низком уровне освещенности и уменьшении светосилы используемого объектива система автофокусировки становится гораздо менее «цепкой» и быстрой, с большим трудом наводя объектив на резкость. А если еще и контраст объекта съемки оказывается совсем невысоким, то система автофокусировки может «забастовать» и при достаточно высокой освещенности и светосильной оптике. Для того чтобы избежать таких неприятных последствий, практически все навесные системные вспышки оснащены расположенным на передней панели специальным светодиодным прожектором подсветки системы автофокусировки.

Такой прожектор включается по команде аппарата и «рисует» на объекте съемки довольно яркую и четкую «полосаточку» красного цвета. По этой полосатой фигуре система автофокусировки с легкостью наводит объектив на резкость не только в полной темноте, но и в других условиях, когда контраст объекта съемки невелик (например при контровом свете) или даже практически отсутствует.

Съемка в отраженном свете

Лобовой свет от вспышки имеет весьма неприятную, но столь же характерную особенность: он практически не образует теней, выявляющих фактуру и форму объекта съемки. Зато особенно при съемке вертикальных кадров, когда вспышка располагается сбоку от аппарата, могут образовываться довольно уродливые тени, тянущиеся от объекта съемки к фону. Впрочем, от появления неприятных теней при вертикальном кадре можно застраховаться, располагая вспышку при съемке всегда над объективом. Сделать это можно при помощи, например, подсоединения вспышки к аппарату посредством специального кабеля либо при помощи дистанционного беспроводного режима управления вынесенной вспышкой. Тогда получившиеся тени будут уходить вниз, что в большинстве случаев выглядит вполне приемлемо и естественно.

Все же остальные недостатки вспышки «в лоб» никуда не денутся — лобовой свет все так же будет скрадывать объем и форму предмета съемки, а фон (особенно удаленный) будет значительно темнее, чем передний план. И такое распределение света не может быть исправлено экспокоррекцией, вводимой как в «+», так и в «-». Однако при съемке в помещениях можно воспользоваться отраженным от потолка светом («bounce flash» в англоязычной литературе). Этот метод дает возможность получать снимки с мягким и приятным световым рисунком, отлично выявляющим форму и объем всех предметов, попадающих в кадр как на переднем, так и на заднем плане, причем последний в этом случае уже будет освещен вполне естественно. Использовать отраженный от потолка свет можно, если вспышка достаточно мощная, а ее осветитель может отклоняться в вертикальном направлении (при съемке горизонтальных кадров) и в горизонтальном направлении (для вертикальных кадров).

Дистанционное беспроводное управление

В этом режиме аппарат управляет без проводов одной или несколькими вынесенными вспышками посредством специальных кодированных сигналов, излучаемых в видимом диапазоне руководящей вспышкой или в инфракрасном диапазоне — специальным контроллером, установленными на аппарате. Главное условие, необходимое для работы таких систем, — расположение ведомых вспышек на небольшом расстоянии (до нескольких метров) и обеспечение прямой видимости между вспышкой и контроллером. Самые продвинутые системы дистанционного беспроводного управления вынесенными вспышками могут одновременно использовать две или три группы вынесенных вспышек, каждая из которых вносит свою определенную долю в создание освещенности кадра. Режимы дистанционного беспроводного управления вспышками, разработанные разными производителями, достаточно сильно различаются как по методам реализации и возможностям, так и по необходимому для этого оборудованию. Поэтому, если вы планируете использовать системы дистанционного беспроводного управления вспышками, не пожалейте времени на детальное ознакомление с документацией на аксессуары, применяемые в этих системах. Список их мы привели в описаниях систем вспышек каждой из ведущих фирм.

Моделирующий свет

В режиме дистанционного беспроводного TTL-управления вынесенными вспышками весьма полезна функция моделирующего света, имеющаяся на некоторых системных вспышках. В режиме моделирующего света вспышка испускает короткие маломощные импульсы света, следующие один за другим с большой частотой. Такой свет позволяет проконтролировать еще до съемки направление и форму теней и бликов, которые потом будут на снимке.

Ручной режим с делением энергии

В этом режиме ни камера, ни сама вспышка не занимаются автоматическим определением необходимой энергии вспышки. Энергия вспышки задается фотографом вручную. Недорогие любительские вспышки могут не иметь ручного режима контроля энергии, а профессиональные приборы позволяют равномерно регулировать энергию вспышки от полного разряда до весьма малой части (1/256 у некоторых вспышек Metz) шагами от 1 до 1/3 ступени. Ручное управление энергией вспышки удобно тогда, когда есть время и возможность подсчитать необходимую для точного экспонирования пленки энергию вспышки, исходя из диафрагмы, чувствительности пленки и расстояния от вспышки до объекта съемки. При этом вспышки могут помочь фотографу установить необходимую диафрагму или мощность импульса вспышки, самостоятельно вычисляя и индицируя на ЖК-дисплее оптимальное расстояние до объекта съемки. Потребность в ручном режиме чаще всего может возникнуть при съемке объекта, на котором автоматика может ошибиться.

Стробоскопический режим

Режим, когда вместо одного импульса вспышка излучает несколько импульсов с точно отмеренной энергией и следующих друг за другом через точно отмеренные промежутки времени, называется стробоскопической вспышкой. Такой режим часто используется в научной и технической фотографии для запечатления на одном кадре пленки сразу нескольких следующих друг за другом фаз процесса движения. Необходимая диафрагма при использовании стробоскопического режима определяется исходя из мощности единичного импульса, расстояния до объекта съемки и чувствительности пленки, а кратчайшая выдержка устанавливается не меньшей, чем сумма всех промежутков между импульсами.

«Медленная» синхронизация

Системы замера постоянного света и TTL-замер вспышки работают, по существу, автономно друг от друга. Поэтому при съемке со вспышкой в условиях невысокого уровня естественной освещенности можно попытаться избавиться от черного (или, как фотографы говорят, «проваленного») заднего плана. Сделать это можно путем установки скорости затвора не на кратчайшей выдержке полного открытия затвора, а рассчитать ее так, чтобы задний план, который вспышка практически не освещает, получил достаточную экспозицию за счет постоянного естественного света. Вот такой режим и называется режимом «медленной» синхронизации. Активируется он в разных аппаратах по-разному.

В аппаратах Canon EOS «медленная» синхронизация может быть включена при установке селектора программ на режим Av, в аппаратах Nikon — при выборе типа синхронизации «slow» или «rear», а в аппаратах Minolta — при нажатии и удержании во время экспонирования кадра кнопки «AEL / slow sync». В этих режимах фотоаппараты сами подбирают необходимую для проработки заднего плана выдержку затвора. При выборе «медленной» синхронизации в большинстве систем также автоматически уменьшается и энергия вспышки. Аналогично работает программа «ночной портрет», имеющаяся в большинстве любительских фотоаппаратов. Кроме того, режим, аналогичный «медленной синхронизации», можно реализовать и вручную — самостоятельно установив соответствующую оптимальной проработке фона выдержку в ручном («M») режиме экспонирования и введя экспокоррекцию в систему управления вспышкой. Не лишним будет добавить, что в зависимости от длительности выдержки, требуемой в режиме медленной синхронизации, для получения резкого снимка может понадобиться штатив.

Синхронизация по второй шторке затвора

Обычно синхроконтакт в фотоаппарате построен так, что запускающий импульс вспышка получает тогда, когда затвор фотоаппарата откроется полностью. Однако некоторые современные фотоаппараты могут допускать изменение настройки типа синхронизации на так называемую синхронизацию по второй шторке затвора (обычно обозначаемой как «rear»), то есть режима, при котором запуск вспышки происходит перед тем, как вторая, закрывающая, шторка затвора начнет свое движение. Естественно, на кратчайшей выдержке полного открытия затвора оба эти режима работают идентично — в момент, когда первая шторка полностью открыла кадровое окно фотоаппарата, начинает движение шторка номер два. Разница между режимами обычной синхронизации и синхронизации по второй шторке становится очевидной тогда, когда текущая выдержка превышает кратчайшую выдержку полного открытия затвора.

Поэтому в некоторых системах (например в аппаратах Nikon) включение синхронизации по задней шторке автоматически приводит к активации режима «медленной» синхронизации (режим «rear slow sync.»). Но это все технические подробности. Для чего же можно применить этот режим? При съемке со вспышкой на длительных выдержках движущихся отражающих и светящихся объектов на снимках возникает неприятный эффект — треки (смазанные изображения) этих объектов, получившиеся за счет длительной экспозиции, оказываются не позади резкого контура, экспонированного светом вспышки (как было бы привычно для нашего восприятия), а наоборот — впереди. То есть создается зрительное впечатление того, что объект движется не вперед, а назад. Для устранения такого недоразумения и служит синхронизация по задней (второй) шторке затвора.

Экспокоррекция системы управления вспышкой

В случае одновременного использования при съемке как естественного света, так и света вспышки общая экспокоррекция может лишь привести к изменению общего уровня экспозиции, но не может изменить баланс экспозиций, создаваемых вспышкой и окружающим светом соответственно. Изменить световой рисунок в этом случае поможет вмешательство в работу системы управления вспышкой. Этот вид экспокоррекции действует только на систему управления вспышкой, не затрагивая работы системы экспонирования постоянным светом. Введение дополнительной экспокоррекции на вспышку позволяет еще более тонко, направленно и осмысленно балансировать естественный свет и свет от вспышки. Впрочем, современные системы даже в автоматических режимах достаточно хорошо справляются с довольно сложной задачей создания оптимального баланса в режиме сбалансированной вспышки-подсветки. Поэтому отдельная экспокоррекция на вспышку доступна в основном лишь на профессиональных и полупрофессиональных моделях аппаратов.

Нюансы, возникающие при съемке со вспышкой

«Красные глаза»

При съемке со вспышкой в помещении нередко обнаруживается весьма неприятный эффект — глаза людей на фотографиях становятся красными и светящимися, особенно в темноте. Естественно, для борьбы с этим неприятным явлением нужно разобраться в его причинах. Подобный эффект «свечения» происходит и в так называемом «сферическом отражателе», который представляет собой сферу из преломляющего свет материала. Луч света, попадая на такой отражатель, преломляется в нем на 180 градусов, а значит, отражается туда, откуда пришел. Направление, откуда пришел луч света, при этом роли не играет. Впрочем, с названием «сферический отражатель» знакомы немногие, хотя почти все сталкивались с его использованием.

К примеру, светящаяся краска на автомобильных номерах и дорожных знаках имеет в своем составе множество мелких стеклянных шариков. Глаз отражает свет точечного источника практически так же, как и стеклянные шарики в световозвращающей краске, поскольку в конструкцию глаза также входит шар из прозрачного материала — стекловидное тело. Красный цвет отражению света в глазах человека придает зрительный белок родопсин, наиболее чувствительный к зеленому свету. Если угол между источником света (вспышкой) и объективом достаточно маленький, то глаза будут светиться в темноте ярко-красным светом. Также на заметность этого эффекта влияет открытие зрачка. Если зрачки полностью открыты (в темном помещении), то яркие красные глаза «поймать» на снимке проще всего. В случае же, когда помещение достаточно светлое или когда в поле зрения фотографируемых попадают яркие лампочки, зрачки сужаются и практически избавляются от красного отсвета.

Бороться с эффектом «красных глаз» можно тремя путями. Первый вариант — использовать не направленный, а рассеянный свет (например отраженный от потолка или от специального белого «лопуха»-отражателя). Второй вариант — увеличение угла между вспышкой и объективом. Этому помогает применение не встроенной, а внешней вспышки, расположенной достаточно далеко от объектива, а также использование небольших дистанций (2—4 метра) при съемке со вспышкой в темном помещении. Третий вариант — уменьшение эффекта «красных глаз» за счет аккомодации (сужения зрачка), вызываемой включаемым предварительно (примерно за 1 секунду до спуска затвора) ярким светодиодом (или лампочки) на передней панели аппарата или несколькими маломощными предвспышками. В этом случае интенсивность отраженного глазом света значительно падает. Кстати, время сужения зрачка при аккомодации у сильно уставшего или хорошо выпившего человека значительно увеличивается. Может, поэтому на застольных фотографиях «вампиры» встречаются чаще всего?

«Провалы» на заднем плане

Кадры, снятые со вспышкой в помещении, чаще всего нетрудно узнать по выбеленным лицам на переднем плане и полной темноте вместо фона. Выглядит эта картина не слишком естественно, да и невозможность разглядеть на снимках задний план делает их сильно похожими друг на друга. Тем не менее попытаться «спасти положение» — вполне реально, и сделать это несложно. Для начала вспомним, что освещенность обратно пропорциональна расстоянию до объекта съемки. Поэтому если при съемке задний план находился далеко, то вспышка его практически не осветит в сравнении с более близким передним планом. Сделать более светлым и «читаемым» задний план можно, если расположить фотографируемых и задний план по возможности ближе друг к другу. Дополнительного выравнивания яркости переднего и заднего планов на снимках можно достигнуть за счет использования при съемке более длиннофокусной оптики. Это приведет к увеличению расстояния как до переднего, так и до заднего плана. Однако за счет того, что дистанция между передним и задним планом не изменилась, соотношение расстояний от фотоаппарата до заднего и до переднего планов станет меньше. А значит, разница в экспозициях для заднего и переднего планов будет значительно меньше, и фотография будет выглядеть заметно лучше.

Вспышкой — в потолок?

Еще более радикально можно решить вопрос с естественностью фотографий при съемке в помещении, если перейти от «прямой» вспышки к использованию отраженного света. Для этого нужно развернуть головку осветителя, направив ее на отражающую свет поверхность. Чаще всего в роли такой большой отражающей поверхности используют потолок. Обычный потолок (отделанный белыми обоями, потолочными панелями, побеленный или окрашенный белой матовой краской) отражает свет не зеркально, а диффузно. Это значит, что каждую точку в пределах светового пятна, образуемого на потолке светом вспышки, можно принять за вторичный источник света, который излучает свет одинаково во все стороны. И поскольку такие мельчайшие вторичные излучатели занимают достаточно большую площадь потолка, то свет от них будет с одной стороны достаточно мягким, одинаково хорошо освещающим не только объект съемки, но и фон.

Что нужно учитывать еще для того, чтобы кадр при использовании отраженного света был удачным? Нужно помнить, что при отражении и рассеивании света от потолка теряется очень много энергии. Поэтому применять для съемки в отраженном свете есть смысл только достаточно мощные вспышки. В ряде случаев (например при съемке в помещении с высокими потолками) желательно также использовать светосильную оптику и высокочувствительные пленки.

Цвет поверхности, от которой отражается свет, также имеет важное значение: отраженный от белого потолка свет останется белым, а отраженный от голубого или розового изменит цвет, что приведет к появлению нежелательного цветового оттенка на фотографии.

Угол отклонения осветителя и положение зум-рефлектора вспышки при съемке в отраженном свете выбираются в большинстве случаев исходя из художественных требований и параметров помещения. К примеру, освещая потолок над объектом съемки, мы получим рассеянное освещение, идущее сверху. Такой тип освещения в ряде случаев хорош, однако при съемке портретов может создать неприятные эффекты в виде глубоких теней на месте глаз и излишне подчеркнутой деталировки при передаче фактуры лица. Поэтому при съемке портрета зачастую оптимально направлять осветитель вспышки вертикально вверх (или даже чуть-чуть назад), особенно в условиях тесного помещения с невысоким потолком. Второй вариант решения проблемы «провалов» под глазами — отклонение небольшой части света вперед, для подсветки образовавшихся теней. Для этого достаточно, например, укрепить на корпусе вспышки полоску белого картона шириной 1—2 сантиметра.

При близко расположенной стене или шторе белого цвета корпус осветителя вспышки можно несколько отклонить в их сторону. Наибольшую свободу в использовании отраженного от стен и потолка света, понятно, дают вспышки, у которых осветитель может быть отклонен не только в вертикальном направлении, но и вращаться в горизонтальной плоскости (в первую очередь это полезно при съемке вертикально скомпонованных кадров).

Угол рассеивания света, задаваемый положением зум-рефлектора вспышки, при использовании отраженной вспышки мало влияет на общий уровень создаваемой освещенности и затрачиваемой при этом энергии вспышки, однако увеличением или уменьшением угла рассеивания вспышки можно регулировать контрастность освещения — от более рассеянного до более жесткого. Некоторые вспышки (например Canon Speedlite 550EX) при отклонении головки осветителя автоматически переходят к положению зум-рефлектора «50 мм» независимо от фокусного расстояния объектива. Стоит дополнительно заметить, что TTL-управление и встроенная автоматика современных вспышек достаточно корректно работают и при использовании метода отраженного от потолка света. Поэтому никакой дополнительной экспокоррекции в этом случае не требуется.

Отражающие «лопухи»

В случаях, когда отраженный от потолка свет использовать не получается (например в случае темного, цветного или излишне высокого потолка), выходом могут послужить специальные навесные отражатели, укрепляемые на корпусе вспышки. Примером таких конструкций может служить «зонтик» (Bounce Reflector Set IV, Set III) для вспышек Minolta или изделия фирмы LumiQuest (Pocket Bouncer, MidiBouncer, Big Bounce, Ultrasoft и 80-20). Различаясь по конструкции, эти рефлекторы сходны в принципе работы, представляя собой большой белый отражатель, укрепленный под углом около 45 градусов к корпусу вспышки. Большая (почти с машинописный лист) площадь отражателя позволяет получить намного более мягкий свет, чем при применении прямой вспышки. Дополнительно выделим LumiQuest 80-20. Этот прибор представляет собой отражатель с вырезами достаточно большой площади. Благодаря этим вырезам отражается в направлении объекта съемки лишь 20 процентов света, а остальные 80 процентов проходят дальше, чтобы отразиться в итоге от потолка помещения. Такой осветитель позволяет комбинировать мягкое освещение переднего плана с нормально освещенным задним планом.

Подобные отражатели можно попробовать изготовить и самостоятельно, используя подручные средства. При этом важно помнить, что для максимально эффективного использования света отражатель должен располагаться под наклоном примерно 45 градусов от корпуса вспышки. Размер отражателя должен быть достаточно большим (поскольку маленький по размеру отражатель не даст желаемой мягкости света). Также следует выбрать такое взаимное расположение отражателя относительно корпуса осветителя, чтобы при работе свет от вспышки освещал почти всю площадь отражателя. При помощи функции моделирующего света (или стробоскопической вспышки) проверить это нетрудно. Естественно, цвет отражателя должен быть белым (для различных эффектов можно также использовать серебристое или золотистое покрытие).

При применении подобных отражателей, как и в случае отражения от потолка, нет необходимости во вводе какой-либо экспокоррекции — TTL-замер учитывает реальное количество света, дошедшего до пленки.

Вспышка-подсветка

Свет электронной вспышки по своим цветовым характеристикам практически идентичен солнечному свету. Поэтому вспышка используется не только как основной источник света при съемке в помещении и при пониженной освещенности. Вспышка часто применяется и при «дневной» съемке в качестве дополнительного источника заполняющего света, помогающего подсветить излишне глубокие тени, выровнять чрезмерный контраст. Современные аппараты вполне приемлемо работают со вспышкой в качестве подсветки даже в полностью автоматических режимах. Однако аппарату, даже самому совершенному, не всегда удается понять замысел фотографа, чтобы выбрать наиболее подходящее соотношение естественного света и света вспышки. Для достижения желаемого результата можно попытаться взять контроль над этим процессом в свои руки.

Самый простой путь — перейти от использования программного режима или «зеленой зоны» (предназначенных для гарантированного получения фотографии в любых условиях) к специализированной сюжетной программе — «ночной портрет», имеющейся в большинстве современных любительских зеркалок. В этом режиме аппарат старается поддерживать баланс между естественным светом и светом вспышки при любой освещенности, не ограничиваясь «безопасной» выдержкой 1/60 (а в ряде случаев и даже более короткой). Мало того, энергия вспышки в этом случае, как правило, несколько снижается — ведь вспышка становится не основным источником света, а лишь вспомогательным (заполняющим).

Еще больше возможностей в управлении согласованием вспышки и естественного света предоставляют фотографу творческие режимы управления экспонированием, в особенности приоритет диафрагмы (с использованием «медленной» синхронизации) и ручной режим. Основные принципы при этом — пара выдержка-диафрагма выбирается для достижения нормальной экспозиции по естественному свету, а система управления вспышкой настраивается с учетом того, что свет вспышки — уже не основной, а лишь вспомогательный источник. В приоритете диафрагмы уменьшение мощности вспышки (в небольших пределах) может производиться автоматически. Однако в широких пределах (как в автоматическом, так и в ручном режиме) такую регулировку можно производить при помощи отдельной экспокоррекции на вспышку.

Применение экспокоррекции на вспышку

Принцип тут довольно прост. Если задний план освещен больше, чем передний, то для выравнивания яркостей, как правило, достаточно вспышки, работающей в стандартном режиме. Если съемка производится в контровом свете, то может потребоваться экспокоррекция со знаком «+». А если вспышка должна лишь слегка подсветить глубокие тени (не «выбивая» их полностью), то нужно снижать мощность вспышки. Иной раз даже снижать значительно (до –1.5 EV и более). Поскольку системы управления вспышкой разных аппаратов значительно отличаются по устройству и принципам работы, то каких-либо точных значений экспокоррекции для «типовых» сюжетов мы приводить не будем. Все эти закономерности проще вывести самостоятельно, исходя из художественных требований и особенности применяемой техники. Однако при ответственной съемке мы советуем применять экспокоррекцию лишь в тех случаях, когда вы можете спрогнозировать результат и уверены, что без ее использования снимок будет хуже. В остальных случаях (особенно при отсутствии опыта использования экспокоррекции) лучше довериться автоматике аппарата.

«Народный» способ коррекции вспышки

К сожалению, возможность введения коррекции в систему управления вспышкой есть далеко не во всех сочетаниях «аппарат + вспышка». В первую очередь такой возможностью обладают старшие модели аппаратов и вспышек. Тем не менее вводить экспокоррекцию в систему управления вспышкой реально можно даже на недорогих любительских аппаратах. Необходимо лишь, чтобы в аппарате была возможность ручного ввода чувствительности пленки, а при работе в ручном режиме высвечивалась графическая шкала экспонометра. Смысл метода заключается в том, чтобы «обмануть» систему управления вспышкой за счет изменения значения чувствительности пленки. К примеру, нам необходимо в систему управления вспышкой ввести экспокоррекцию –1 EV. Для этого вводится новое, пропорционально увеличенное значение чувствительности пленки (например «ISO 400» для пленки ISO 200). Того же эффекта можно достигнуть при помощи ввода соответствующей экспокоррекции (–1 EV), однако в большинстве аппаратов экспокоррекция может быть использована только в автоматических режимах и не работает в М-режиме.

Далее, для того, чтобы экспозиция по естественному свету не изменилась, нужно при выборе пары «выдержка — диафрагма» в ручном режиме добиться показаний «+1 EV» на графической шкале экспонометра. В итоге поправки, вводимые в систему измерения постоянного света, компенсируют друг друга, а система управления вспышкой окажется «обманутой» на –1 EV и даст вдвое более слабый импульс света. Способ этот, конечно, не слишком подходит для частого использования. Однако ради того небольшого количества кадров, которые много бы потеряли без экспокоррекции, можно на эти неудобства пойти. Самое сложное в этом методе — не забыть вернуть назад реальное значение чувствительности пленки!

Управление студийными вспышками

Навесную вспышку также весьма удобно использовать не только для репортажной съемки, но и в студии, при работе с большими студийными вспышками. Ведь отдельный коаксиальный синхроконтакт для подсоединения студийных вспышек есть только в дорогих камерах — профессиональных и некоторых полупрофессиональных. С другой стороны, даже при наличии на аппарате синхроразъема использование синхрокабеля для соединения со вспышками вызывает массу неудобств. Слишком короткий кабель ограничивает фотографа в свободе передвижения даже в небольшой студии, а более длинный — вечно запутывается, лезет под ноги или цепляется за оборудование. Не говоря уже о том, что при использовании флашметра приходится постоянно перетыкать синхрокабель из аппарата во флашметр и обратно.

Выход довольно прост: можно переключить все студийные вспышки в режим работы со светосинхронизатором, а в качестве запускающего передатчика использовать навесную фотовспышку, работающую в режиме частичной энергии. Зум-рефлектор вспышки при этом есть смысл переставить на максимальный угол освещения. В режиме излучения небольшой (1/3—1/128) части полной энергии вспышка выдает мощный, но очень короткий импульс света. Такой импульс надежно и устойчиво запускает вспышки со светосинхронизаторами, оказывая при этом минимальное воздействие на освещенность объекта съемки. Запускающая вспышка практически заметна лишь по «зайчикам» в глазах портретируемого или бликам на отражающих предметах. Если же и такое влияние света запускающей вспышки вызывает неудобство, то можно развернуть головку осветителя вспышки в потолок (или в стену).

Еще лучшего эффекта можно добиться, закрыв рассеиватель вспышки ИК-фильтром, который прозрачен для инфракрасного света (к которому светосинхронизаторы даже более чувствительны), но практически не пропускает свет видимого диапазона. В качестве ИК-фильтра с успехом можно применить черный отрезок проявленной фотопленки (неэкспонированной слайдовой пленки или засвеченной негативной). Идею использования навесной согласованной вспышки в студии уже взяла на вооружение и японская фотопромышленность. Компактная маломощная вспышка Nikon Speedlight SB30 специально для такого использования оборудована встроенным ИК-фильтром и имеет возможность работать в режиме излучения 1/8 или 1/32 части полной энергии.

Уход за фотовспышками

Фотовспышки, как и вся остальная сложная техника, требует аккуратного обращения и бережного ухода. В этом случае вспышка будет служить вам долго и надежно.

Для питания желательно использовать только те типы элементов, которые рекомендует производитель в инструкции к вспышке. Большинство вспышек, описываемых в нашем обзоре, рассчитаны на питание от щелочных (alkaline) батареек размера LR6, никель-кадмиевых (Ni-Cd) и никель-металлгидридных (Ni-MH) аккумуляторов размера AA. Не стоит в качестве источников питания использовать другие типы батареек, подходящих лишь по размеру. К примеру, солевые («обычные») батарейки R6 обладают слишком низкой емкостью и высоким внутренним сопротивлением, поэтому мощные вспышки от таких батареек могут не зарядиться даже для первого импульса. Часть вспышек также нежелательно питать и от аккумуляторов. В первую очередь речь идет о самых недорогих моделях.

Несоблюдение инструкции в этом случае может уже привести к плачевным последствиям — выходу из строя ключевого элемента преобразователя, нагрузочная способность которого не рассчитана на низкое внутреннее сопротивление аккумуляторов. Менять аккумуляторы или батарейки во вспышке нужно всем комплектом сразу. Не допускается смешивать в одном комплекте источники питания разного типа — например аккумуляторы и батарейки или Ni-Cd с Ni-MH аккумуляторами. При длительных перерывах между съемками желательно извлечь аккумуляторы или батарейки из вспышки. Длительное хранение батареек/аккумуляторов во вспышке может привести к порче контактов или даже выходу из строя электроники. Дело в том, что из батареек может вытечь электролит (особенно если батарейки уже какое-то время поработали), а аккумуляторы выделяют вредные газы. Исключение составляют лишь самые безопасные в этом смысле литиевые элементы, используемые для питания вспышек типа Nikon Speedlight SB-50 DX.

Корпус вспышки желательно держать в чистоте, протирая сухой чистой тканью (всякого рода растворители использовать не стоит). Особо тщательного обращения требует поверхность рассеивателя вспышки. Даже незначительные следы жира, остающиеся на рассеивателе в результате случайных прикосновений пальцев рук, при работе вспышки имеют свойства пригорать и приводить к потемнению (а далее — и к разрушению!) поверхности рассеивателя. Если благодаря неаккуратному обращению процесс образования темных пятен на поверхности рассеивателя вспышки уже начался, остановить его практически невозможно, а значит, вспышку приходится отправлять в ремонт для замены стекла рассеивателя.

Также вспышку нужно оберегать от влаги и конденсата.

Системные вспышки «крупным планом»

От рассмотрения общих принципов работы фотовспышек и использования их в съемке перейдем к более детальному описанию современных моделей системных фотовспышек ведущих производителей. Выбирая себе вспышку, стоит учитывать следующие факторы. Самые мощные и дорогие «старшие» вспышки каждой линейки чаще всего оказываются незаменимыми в профессиональной съемке. Этому способствует полный спектр режимов работы (в том числе и достаточно редко применяемых — стробоскопического режима, ручного режима с регулировкой энергии, режима контроллера при дистанционном управлении). Для профессионала-репортера важна также возможность использования дополнительного (более мощного и емкого) источника питания для ускорения перезарядки вспышки.

При любительском же использовании «старшие» вспышки привлекательны в первую очередь универсальностью, обеспечиваемой большим запасом мощности и возможностью отклонения головки осветителя как в вертикальном направлении, так и по горизонтали. Однако в случае использования таких вспышек вместе с легкими и компактными любительскими аппаратами могут возникать эргономические проблемы — ведь вспышка, укомплектованная батарейками, весит заметно больше, чем аппарат с пленкой и объективом.

«Средние» вспышки каждой линейки гораздо проще в управлении и несколько беднее по функциям (в первую очередь это касается различных режимов ручного управления), а также часто имеют возможность отклонения корпуса осветителя только по вертикали. Заметно меньше у них и максимальная энергия импульса. Однако для любительского применения это чаще всего не выступает заметным ограничением (особенно сейчас, когда современные фотопленки c чувствительностью ISO 200-400 по резкости и зернистости мало отличаются от менее чувствительных). Зато благодаря меньшей, чем у топ-вспышек, максимальной энергии, «средние» вспышки гораздо компактнее, легче, менее требовательны к нагрузочным характеристикам элементов питания и заметно экономичнее. А исключительно простое управление и невысокая стоимость делают их вполне отличным выбором для среднего любителя.

Покупка вспышек типа Canon Speedlite 220EX или Minolta program 2500 (D), имеющих относительно небольшую максимальную энергию импульса и оснащенных рефлектором с постоянным углом рассеивания света, дает возможность воспользоваться современной системой дозирования импульсного света (E-TTL или ADI соответственно) для заметного улучшения работы вспышки в сложных условиях. Поддержка «продвинутых» режимов управления вспышкой важна и для использования таких вспышек на цифровых аппаратах.

Самые простые вспышки, поддерживающие только TTL-замер, позволяют в какой-то мере решить проблемы «красных глаз» (за счет увеличения расстояния между вспышкой и объективом) и увеличения ресурса элементов питания аппарата. Такие вспышки зачастую имеют заметно большую «дальнобойность», чем встроенная в аппарат, а часть из них имеет дополнительный светодиодный прожектор подсветки автофокусировки. Естественно, и цена таких простых вспышек, как правило, весьма демократична.

Поэтому мы рекомендуем при покупке вспышки ориентироваться в первую очередь на свои требования, на свой стиль съемки, с тем, чтобы останавливаться на оптимальном именно для вас варианте. Естественно, по мере увеличения опыта съемки требования к фототехнике имеют свойство возрастать, поэтому мы рекомендуем не забывать учитывать и этот факт.


Сергей ДУБИЛЬЕР.
Продолжение обзора вспышек читайте в следующем номере.






Мнения пользователей

Михаил  (2012-10-06) 
Спасибо - значит ничего. Поклон низкий Автору. Изучил и применил. Всё прекрасно - просто Во! Снимки стали более прекрасны!


Александр  (2011-10-28)
Спасибо!


lidiya  (2011-10-05) 
Огромное спасибо за статью!


Анатолий  (2011-07-20) 
Ваша статья просто и очень доходчиво
обучает и дает новые познания в фото.
Спасибо Вам.


Александр  (2011-06-06)
Узнал много нового. Автору спасибо!


Елена  (2011-05-06)
Спасибо!


Ксюша  (2011-04-04)
Спасибо большое! Нашла ответы на возникшие вопросы.


Роман  (2011-02-07)
Очень полезная статья. Коротко о главном. Спасибо!


вадим  (2011-01-14)
Согласен, статья просто класс, простое изложение сложных вопросов, хотя теория это не практика.


Дмитрий  (2010-01-07)
Еще раз спасибо автору!


Андрей  (2009-09-03)
Статья просто супер!


Сергей  (2009-03-28) 
Просто супер!!!
Я "начинающий", получил столько
ответов на свои вопросы...
Большое спасибо автору статьи!!!


Сергей  (2009-01-28)
БОЛЬШОЕ СПАСИБО!


Александр  (2008-12-04)
Спасибо!


Надежда  (2008-11-24)
Огромное Вам спасибо за статью!


Александр R2D2  (2008-09-05)
Очень информативно. В избранное!

Спасибо!


Эдуард  (2008-08-21) 
Очень поучительно, узнал много нового. Спасибо за статью!!!


Дмитрий  (2008-01-18)
Отличная статья.
Спасибо автору!



Оставить мнение

Имя

E-mail (не обязательно)

Мнение


Введите код

 
  все статьи    все тесты    экспертная оценка    школа потребителя  




Яндекс цитирования Яндекс.Метрика
Rambler's Top100 Система Orphus


Нашли ошибку на сайте? Выделите ее мышью и нажмите Ctrl+Enter.

Copyright © "Потребитель".
Использование материалов сервера в on-line изданиях разрешается при наличии гиппертекстовой ссылки на foto.potrebitel.ru.
Ссылка должна содержать слова: "Журнал ПОТРЕБИТЕЛЬ. Фото&Техника".
Использование материалов в off-line изданиях возможно лишь с письменного разрешения редакции.
По вопросам размещения рекламы, ошибкам на сайте, предложениям по работе сайта -


Место для рекламы:

Оригинальная подсветка ступеней светодиодами и оптоволоконными нитями